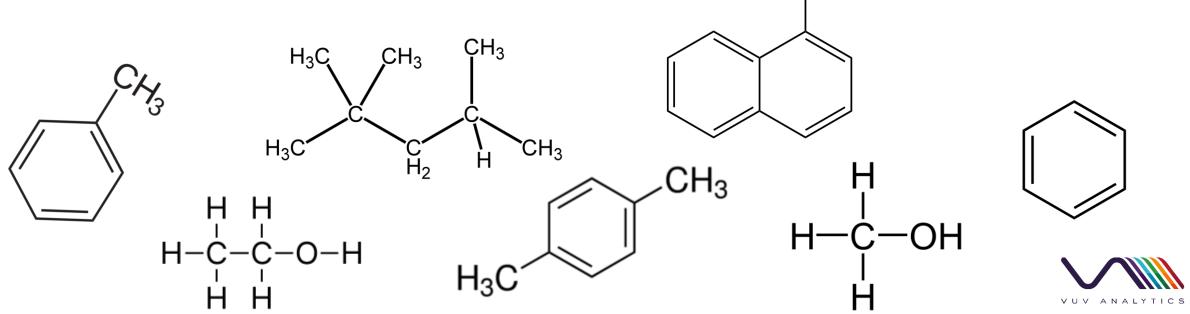
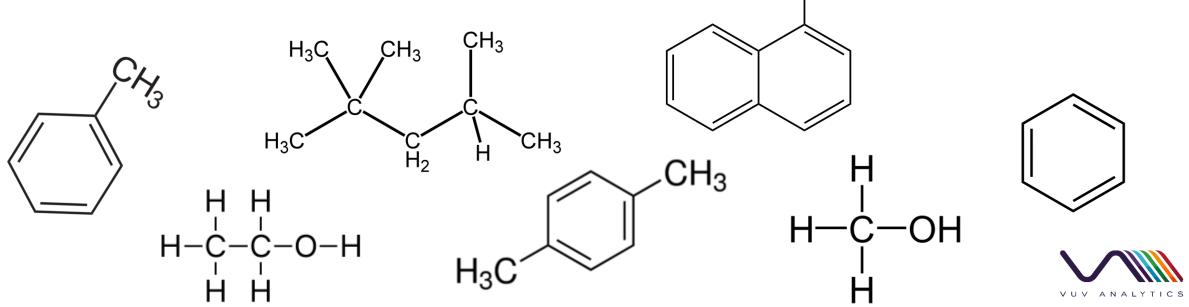
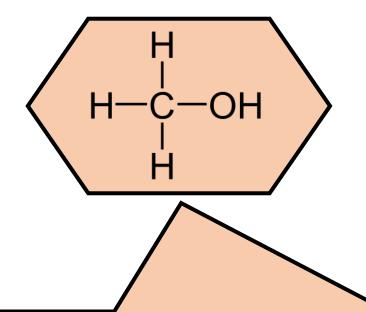
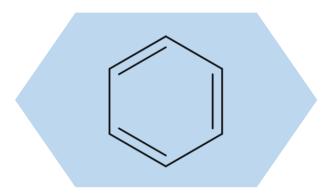
Fast Analysis of Non-Traditional Gasoline Additives with Gas Chromatography-Vacuum Ultraviolet Spectroscopy


Ryan Schonert, Dan Wispinski, Jack Cochran

Gasoline Additives


- Organic compounds which adjust fuel properties
 - Refining process, store-bought
- Major fuel blending components: octane boosters, pollution preventers
 - Blended at volume % level


Groysman, A. (2014). Corrosion in Systems for Storage and Transportation of Petroleum Products and Biofuels Identification, Monitoring and Solutions. Ch. 2: Fuel Additives. Springer Science+Business Media Dordrecht.


Gasoline Additives

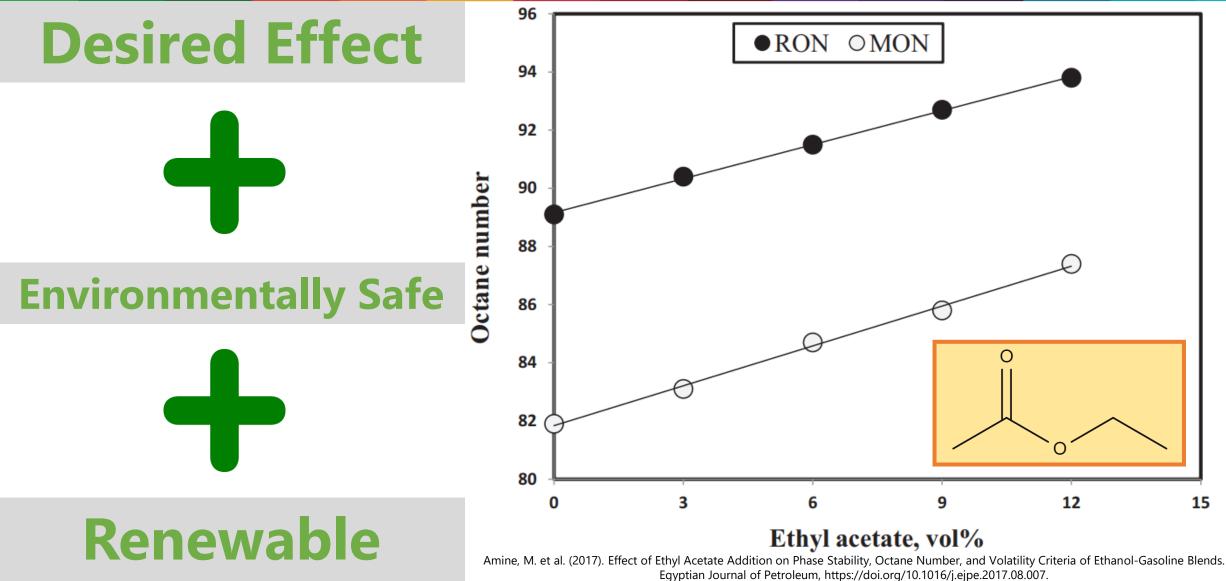
- Organic compounds which adjust fuel properties
 - Refining process, store-bought
- Major fuel blending components: octane boosters, pollution preventers
 - Blended at volume % level

Groysman, A. (2014). Corrosion in Systems for Storage and Transportation of Petroleum Products and Biofuels Idenfitication, Monitoring and Solutions. Ch. 2: Fuel Additives. Springer Science+Business Media Dordrecht.

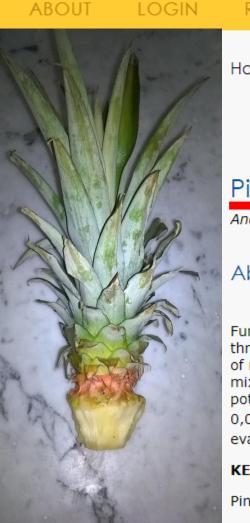
Methanol

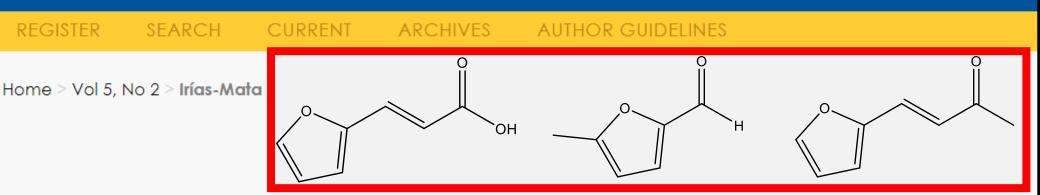
- Cheap and efficient octane booster
- Emissions: high formaldehyde concentrations

H H-C-OH H


Benzene

- Important BTEX octaneboosting component
- Group 1 carcinogen




Trojan UV (2010). Update on Emerging Contaminants: Fuel and Fuel Additives. Trojan UV / Trojan Technologies. Web.

Non-Traditional Gasoline Additives (NTGAs)

Pineapple-stover derived furan compounds as gasoline oxygenate additive

Andrea P. Irías-Mata, Giselle Lutz

Abstract

Furan compounds have properties such as oxygenate additive to enhance octane number of gasoline. The procedure was a furan synthesis through an acidic hydrolysis of the polysaccharide materials from pineapple plantation residues. The products obtained were a complex mixture of mostly 3-(2-furanyl)-2-propenoic acid, 4-(2-furanyl)-3-butene-2-one and 5-methyl-furfural. Thermodynamic and rheolgical properties of the mixture *in toto* were measured, as well as its oxygenating capability. The results showed a two units enhancer oxygenate additive for naphta, potentially safe for transport and handling, presenting the following characteristics: specific gravity 1,22559±0,00002, kinematic viscosity $0,0127\pm0,0001$ Stokes, enthalpy of vaporization $39,1\pm0,1kJ$ mol⁻¹, isothermal compressibility $(1,0\pm0.2)10^{-9}$ Pa⁻¹, rate of evaporation $0,03\pm0,02g$ s⁻¹ m⁻² and Hildebrand solubility parameter $18,0\pm0,1(J$ cm⁻³)^{1/2}.

KEY WORDS

Pineapple crown, pineapple stubble, research octane number, oxygenate additive, furan compound, methyl terbutyl ether.

2017-01-0868

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

Robert L. McCormick, Gina Fioroni, Lisa Fouts, and Earl Christensen National Renewable Energy Laboratory

> Janet Yanowitz Ecoengineering Inc.

Evgueni Polikarpov, Karl Albrecht, and Daniel J. Gaspar Pacific Northwest National Laboratory

> John Gladden and Anthe George Sandia National Laboratory

Biomass-derived

compounds that

have potential as

fuel blendstocks

(partial list)

Name	Formula	CAS#	RON (D2699)	MON (D2700)	HOV, kJ/kg ^a	LHV, MJ/kg	LHV, MJ/L (at 20°C)	Density, g/L (at 20°C)	Water Solubility, mg/L
Alcohols			100					-	
Methanol	CH ₄ O	67-56-1	109	89	1173.5	20.09	15.8	786.4	miscible
Ethanol	C_2H_6O	64-17-5	109	90	918.2	25.54	20.2	789.3	miscible
n-Propanol °	C ₃ H ₈ O	71-23-8	104	89	788.7	30.8	24.7	811.0	miscible
2-propanol °	C ₃ H ₈ O	67-63-0	109	97	743.8	30.7	24.1	781.2	miscible
1-Butanol	$C_4H_{10}O$	71-36-3	98	85	708.3	33.1	26.8	805.7	68,000
2-butanol	$C_4H_{10}O$	78-92-2	107	93	670.5	33.1	26.7	802.6	181,000
2-methylpropan-1-ol (isobutanol)	C ₄ H ₁₀ O	78-83-1	105	90	685.4	33.2	26.6	797.6	85,000
2-methyl-1-butanol	C ₅ H ₁₂ O	137-32-6	101	88.3	613.7	34.69	28.3	814.8	29,700
2-pentanol	C ₅ H ₁₂ O	6032-29-7	99.4	90.8	608.1	34.58	27.8	805.2	44,600
Alkanes									
Triptane (2,2,3-trimethylbutane) °	C ₇ H ₁₆	464-06-2	112	101	319.3	44.4	30.8	694.5	29
Alkenes									
Diisobutylene (a mixture of three parts 2,4,4-trimethyl-1-pentene and one part 2,4,4-trimethyl-2-pentene)	C8H16	25167-70-8	106	86.5	318.2	44.27	31.66	715.1	4
Esters					100 -	10.0	1.5.0		
Methylacetate	C ₃ H ₆ O ₂	79-20-9	>120	>120	438.7	19.3	17.9	927.1	243,000
Methylbutanoate ^c	C5H10O2	623-42-7	107.2	105	401.4	26.07	23.25	892.2	15,000
Methylisobutanoate (2-methylpropanate) °	C5H10O2	547-63-7	103.6	104.7	365.2	28.38	25.04	882.4	9,260
Methylpentanoate ^c	C ₆ H ₁₂ O ₂	624-24-8	103.4	101.1	379.6	28.25	24.99	884.8	2,200
Methyl-2-methylbutanoate c	C ₆ H ₁₂ O ₂	868-57-5	110.5	99.1	338.3 b	28.08	24.59	875.7	3,200
Ethylacetate	$C_4H_8O_2$	141-78-6	118	>120	399.5	23.79	21.34	894.6	80,000
Ethylbutanoate	C ₆ H ₁₂ O ₂	105-54-4	115.4	106	369.3	28.64	25.17	874.3	4,900
Ethylisobutyrate (2-methylpropanoate) c	$C_6H_{12}O_2$	97-62-1	110.3	109.5	342.6	30.44	26.46	869.3	3,200
1-Methylethylacetate (isopropylacetate) c	$C_5H_{10}O_2$	108-21-4	>120		363.3	25.77	22.47	871.8	29,000
Butylacetate	C ₆ H ₁₂ O ₂	123-86-4	100.8	100	369.3	27.43	24.03	876.0	8,400
Isobutylacetate (2-methylpropylacetate) c	C ₆ H ₁₂ O ₂	110-19-0	108.7	112.3	319.4	28.01	24.4	871.2	6,300
Isoamylacetate (3-methylbutylacetate) °	C7H14O2	123-92-2	100.6	97.2	356.4	32.15	27.84	866.1	2,000
Ethers									
Methoxybenzene (anisole)	C ₇ H ₈ O	100-66-3	103	92	428.2	33.5	33.3	989.2	1,040
Furans									
2-Methylfuran/2,5-dimethylfuran mixture (40/60 by weight)			102	87		32.2	29.1	903	2,240
Ketones					101.0				
2-Butanone (methyl ethyl ketone)	C_4H_8O	78-93-3	111	105.5	481.2	31.36	25.08	799.8	223,000
2-Pentanone	C5H10O	107-87-9	105.7	103	445.8	33.37	26.75	801.5	43,000
3-Pentanone °	C ₅ H ₁₀ O	96-22-0	106.8		448.2	33.43	27.08	810.1	45,900
3-Methyl-2-butanone °		563-80-4	108.9	102.2	428.4	33.34	26.68	815.0	5,237
Cyclopentanone	C ₅ H ₈ O	120-92-3	101	89.4	504.0	31.99	30.2	944.1	60,000
3-Hexanone °	$C_6H_{12}O$	589-38-8	101.9	93.5	417.3	34.83	28.61	821.6	14,700
4-Methyl-2-pentanone (methylisobutyl ketone) ^e	$C_6H_{12}O$	108-10-1	105.7	105.5	417.3	34.21	27.27	797.1	19,000
2,4-dimethyl-3-pentanone	$C_7H_{14}O$	565-80-0	99	92.5	363.4	35.84	28.81	803.9	5,700
Ketone mixture (42.5 wt% 2-pentanone, 11.4 wt% methyl-isobutyl ketone, 30.3 wt% 4-heptanone, 15.8 wt% 2-heptanone)			99.4	99.6	424 ^b	34.61	27.99	808.7	

17-01-0868

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

Robert L. McCormick, Gina Fioroni, Lisa Fouts, and Earl Christensen

Alcohols	J. Gaspar
Alkane	25
B Alkenes	red
com Esters	-
h Ethers	las
fuel Furan	5
(c Ketones	

			RON	MON	HOV.	LHV.	LHV,	Density,	Water
Name	Formula	CAS#	(D2699)	(D2700)	kJ/kg ^a	MJ/kg	MJ/L (at	g/L (at	Solubility,
			(1)2077)	(02/00)	KJ/Kg	MUANE	20°C)	20°C)	mg/L
Alcohols		•							
Methanol	CH ₄ O	67-56-1	109	89	1173.5	20.09	15.8	786.4	miscible
Ethanol	C ₂ H ₆ O	64-17-5	109	90	918.2	25.54	20.2	789.3	miscible
n-Propanol ^c	C ₃ H ₈ O	71-23-8	104	89	788.7	30.8	24.7	811.0	miscible
2-propanol °	C ₃ H ₈ O	67-63-0	109	97	743.8	30.7	24.1	781.2	miscible
1-Butanol	C ₄ H ₁₀ O	71-36-3	98	85	708.3	33.1	26.8	805.7	68,000
2-butanol	C4H10O	78-92-2	107	93	670.5	33.1	26.7	802.6	181,000
2-methylpropan-1-ol (isobutanol)	C4H10O	78-83-1	105	90	685.4	33.2	26.6	797.6	85,000
2-methyl-1-butanol	C ₅ H ₁₂ O	137-32-6	101	88.3	613.7	34.69	28.3	814.8	29,700
2-pentanol	C ₅ H ₁₂ O	6032-29-7	99.4	90.8	608.1	34.58	27.8	805.2	44,600
Alkanes	0,0012-0	0002 27 7		2010		0 1100		00012	1,000
Triptane (2,2,3-trimethylbutane) °	C7H16	464-06-2	112	101	319.3	44.4	30.8	694.5	29
Alkenes	0,000				0.00		2 010	0.2 110	
Diisobutylene (a mixture of three parts									
2,4,4-trimethyl-1-pentene and one part	C8H16	25167-70-8	106	86.5	318.2	44.27	31.66	715.1	4
2,4,4-trimethyl-2-pentene)									
Esters									
Methylacetate	C ₃ H ₆ O ₂	79-20-9	>120	>120	438.7	19.3	17.9	927.1	243.000
Methylbutanoate °	C ₅ H ₁₀ O ₂	623-42-7	107.2	105	401.4	26.07	23.25	892.2	15,000
Methylisobutanoate (2-methylpropanate) c	C ₅ H ₁₀ O ₂	547-63-7	103.6	104.7	365.2	28.38	25.04	882.4	9.260
Methylpentanoate ^c	C ₆ H ₁₂ O ₂	624-24-8	103.4	101.1	379.6	28.25	24.99	884.8	2,200
Methyl-2-methylbutanoate °	C6H12O2	868-57-5	110.5	99.1	338.3 b	28.08	24.59	875.7	3,200
Ethylacetate	C ₄ H ₈ O ₂	141-78-6	118	>120	399.5	23.79	21.34	894.6	80.000
Ethylbutanoate	C ₆ H ₁₂ O ₂	105-54-4	115.4	106	369.3	28.64	25.17	874.3	4,900
Ethylisobutyrate (2-methylpropanoate) °	C ₆ H ₁₂ O ₂	97-62-1	110.3	109.5	342.6	30.44	26.46	869.3	3,200
1-Methylethylacetate (isopropylacetate) °	C ₅ H ₁₀ O ₂	108-21-4	>120		363.3	25.77	22.47	871.8	29,000
Butylacetate	C ₆ H ₁₂ O ₂	123-86-4	100.8	100	369.3	27.43	24.03	876.0	8,400
Isobutylacetate (2-methylpropylacetate) °	C ₆ H ₁₂ O ₂	110-19-0	108.7	112.3	319.4	28.01	24.4	871.2	6,300
Isoamylacetate (3-methylbutylacetate) °	C7H14O2	123-92-2	100.6	97.2	356.4	32.15	27.84	866.1	2,000
Ethers	0/11/102	120 /2 2	100.0	21	000.1	0	27.04	000.1	2,000
Methoxybenzene (anisole)	C7H8O	100-66-3	103	92	428.2	33.5	33.3	989.2	1,040
Furans	0/1180	100 00 0	100	/=	120.2	00.0	00.0	767.2	1,010
2-Methylfuran/2,5-dimethylfuran mixture									
(40/60 by weight)			102	87		32.2	29.1	903	2,240
Ketones									
2-Butanone (methyl ethyl ketone)	C ₄ H ₈ O	78-93-3	111	105.5	481.2	31.36	25.08	799.8	223,000
2-Pentanone	C ₅ H ₁₀ O	107-87-9	105.7	103	445.8	33.37	26.75	801.5	43,000
3-Pentanone °	C5H10O	96-22-0	106.8		448.2	33.43	27.08	810.1	45,900
3-Methyl-2-butanone °	031100	563-80-4	108.9	102.2	428.4	33.34	26.68	815.0	5,237
Cyclopentanone	C ₅ H ₈ O	120-92-3	101	89.4	504.0	31.99	30.2	944.1	60,000
3-Hexanone °	C ₆ H ₁₂ O	589-38-8	101.9	93.5	417.3	34.83	28.61	821.6	14,700
4-Methyl-2-pentanone (methylisobutyl									
ketone) °	$C_6H_{12}O$	108-10-1	105.7	105.5	417.3	34.21	27.27	797.1	19,000
2,4-dimethyl-3-pentanone	C7H14O	565-80-0	99	92.5	363.4	35.84	28.81	803.9	5,700
Ketone mixture (42.5 wt% 2-pentanone,	en pro	202.00.0		100	00011	00.01		00017	01100
11.4 wt% methyl-isobutyl ketone, 30.3 wt%			99.4	99.6	424 ^b	34.61	27.99	808.7	
4-heptanone, 15.8 wt% 2-heptanone)									
· · · · · · · · · · · · · · · · · · ·									

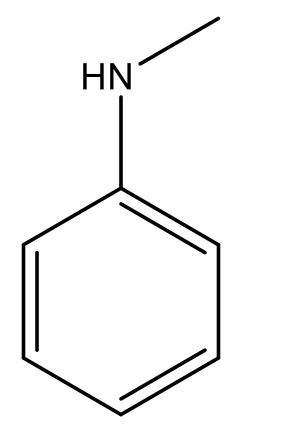
Harmful NTGAs

Methyl Acetate Acetone N-Methylaniline Methylal Secondary-Butyl Acetate

"Considered to be a cheap source of octane, these

chemicals could cause engine problems...[t]hey are

also harmful to human health and to the



ACFA (2014). Report on Harmful Chemicals in Gasoline Blending. ACFA. Web.

Harmful NTGAs

Methyl Acetate Acetone N-Methylaniline Methylal Secondary-Butyl Acetate

- Octane booster
- Causes gum formation carbon

deposit in engine parts

• Swells rubber seals – may cause oil

leaks

Gasoline Analysis – DHA, ASTM D6730

- 2+ hour run time
- Identification by retention time novel compounds only

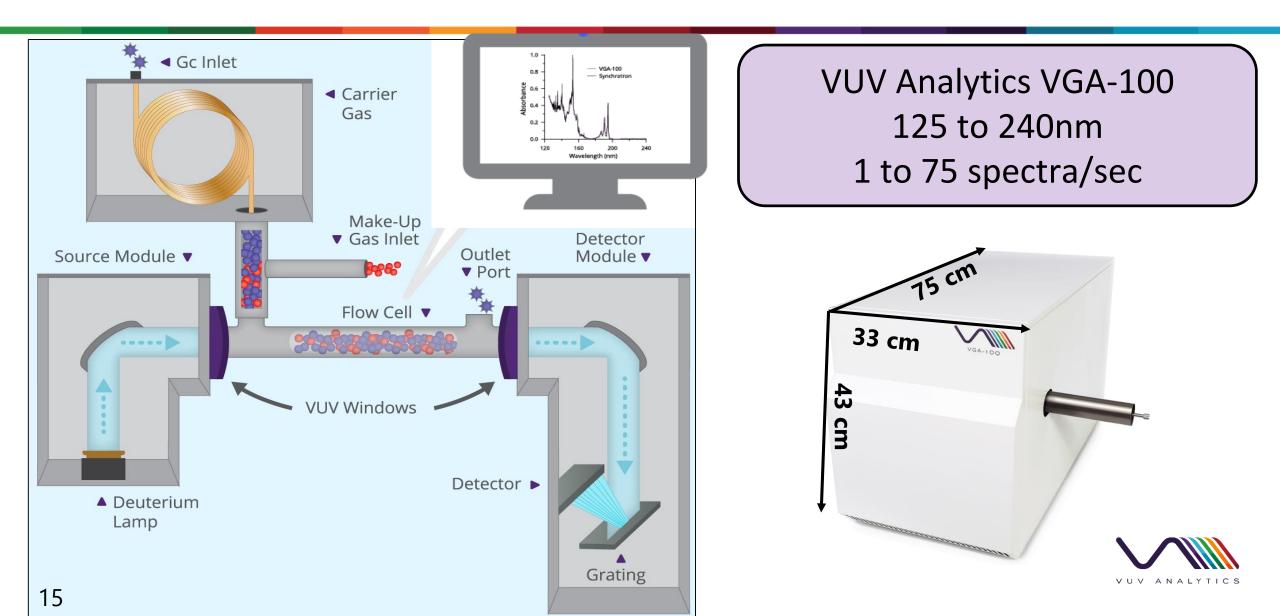
Designation: D6730 - 01 (Reapproved 2016)

Not equipped to analyze

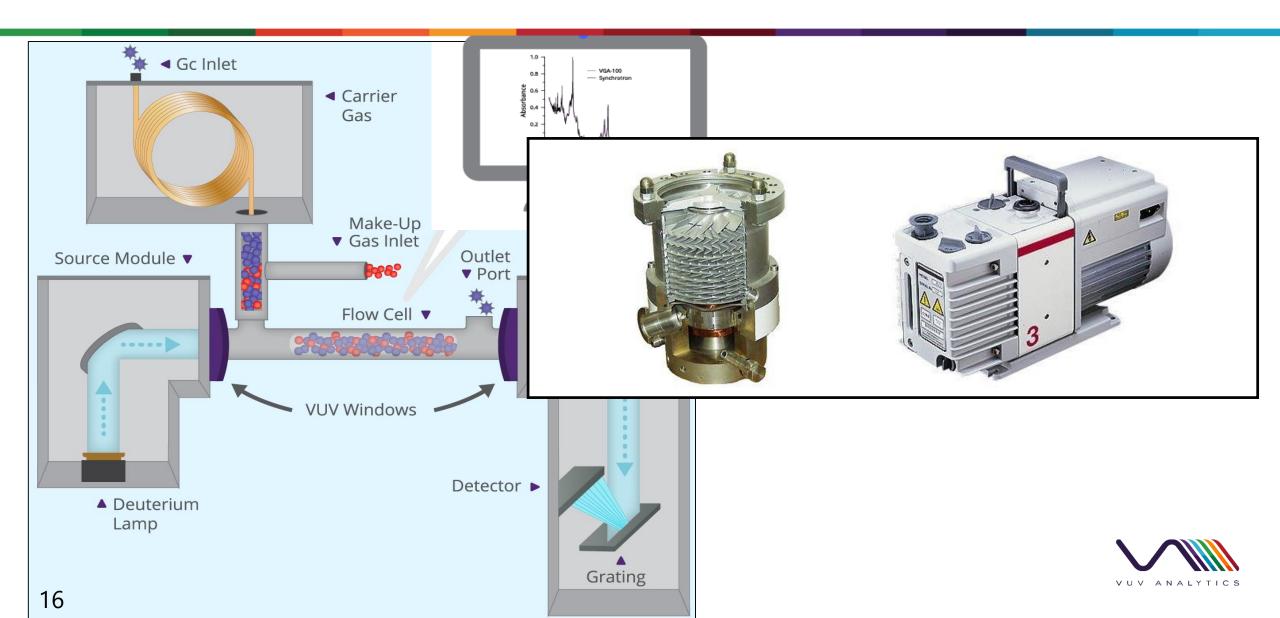
Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 100–Metre Capillary (with Precolumn) High-Resolution Gas Chromatography¹

Gasoline malysis – DHA, ASTM D6730

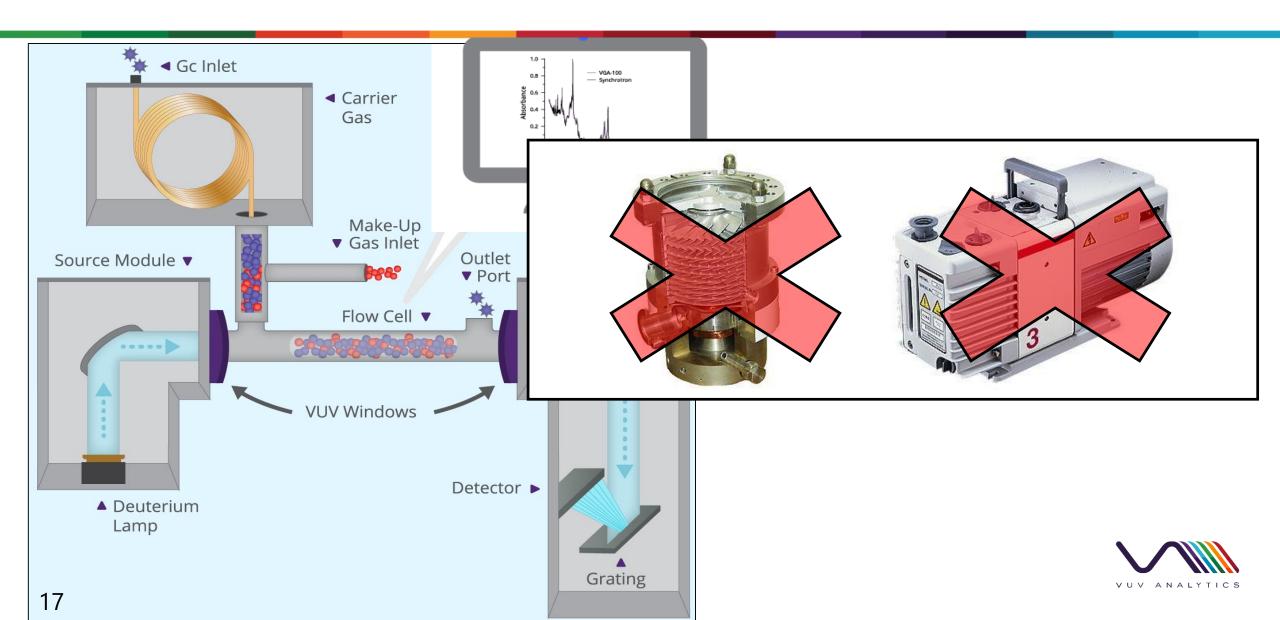
2+ hor run the second Not equipped to analyze

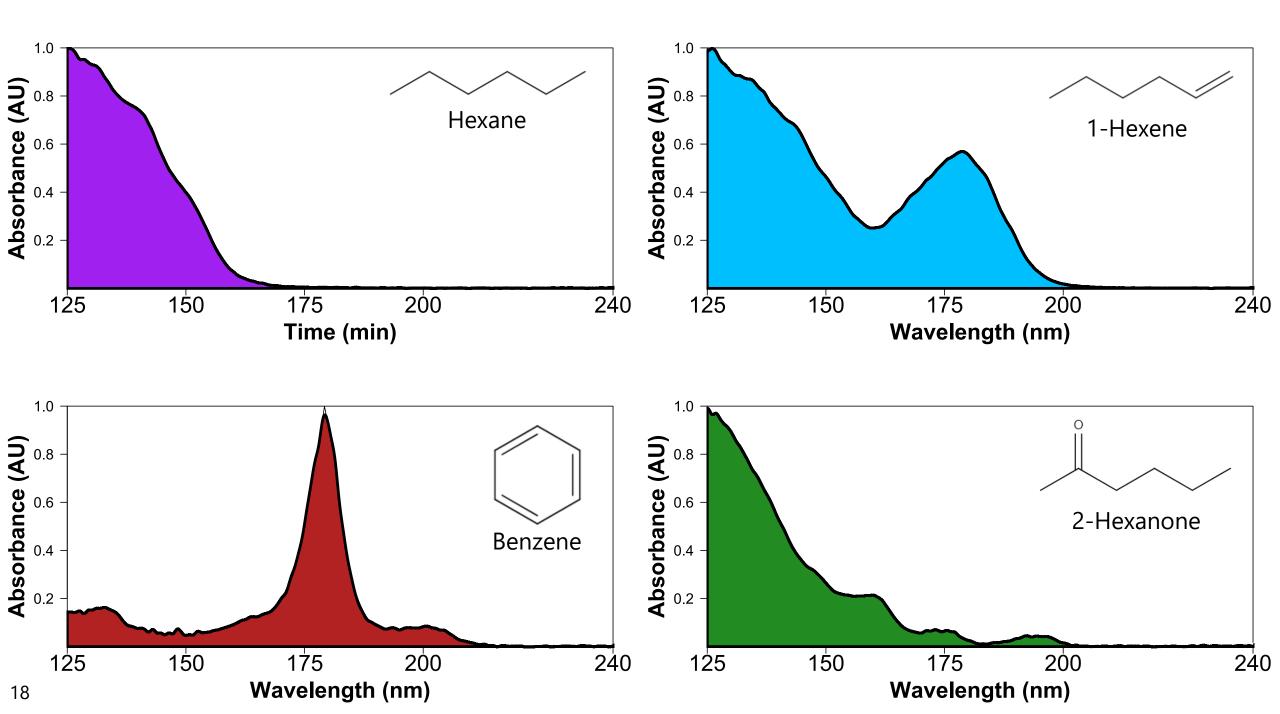


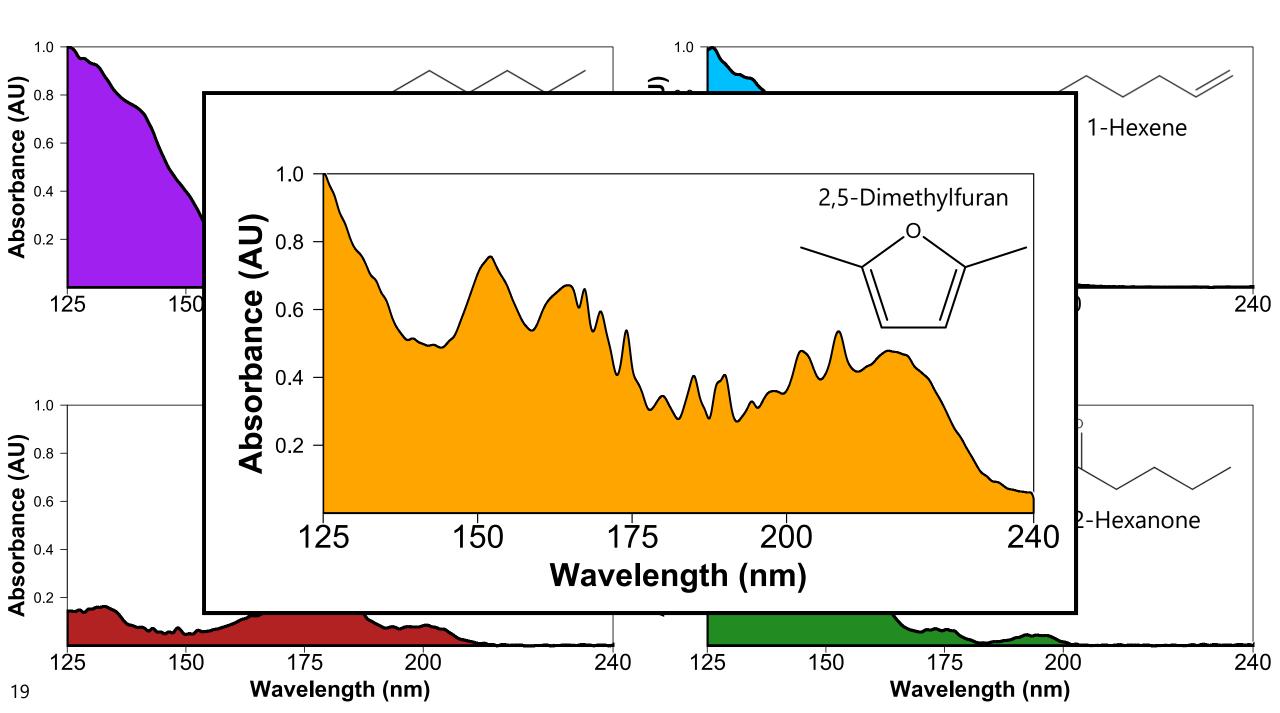
Designation: D6730 - 01 (Reapproved

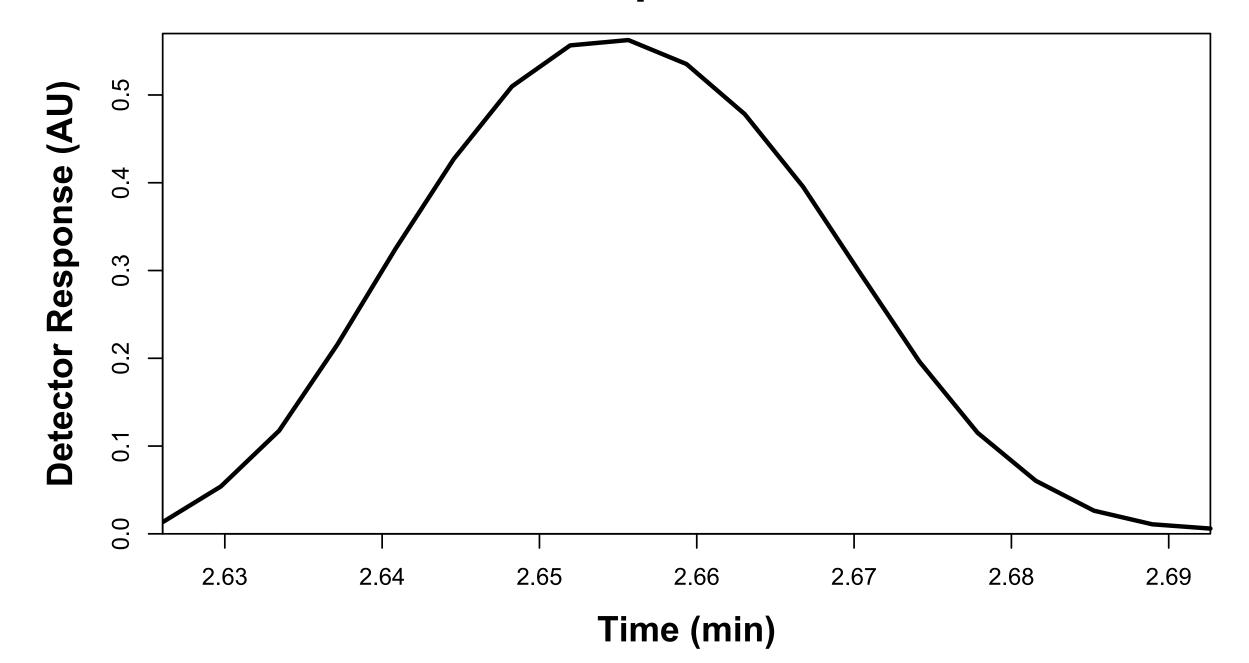

Standard Test Method for Determination of Individual Components in Sp. Ignition Engine Fuels by 100–Metre Capillary (with Precolu. \ Highsolution Gas Chromatography¹

01

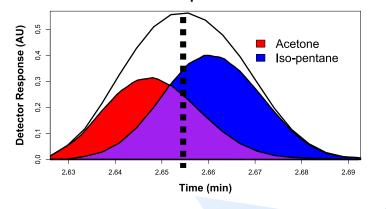

How Does VUV Spectroscopy Work?

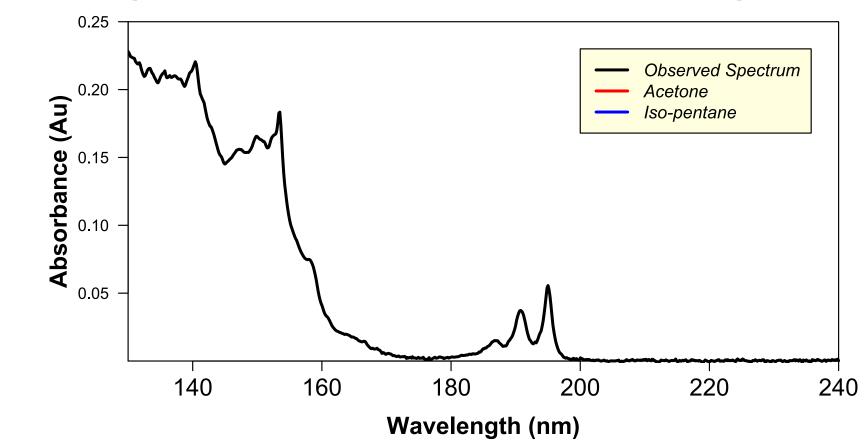


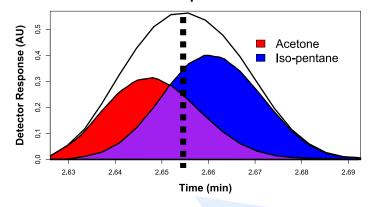

How Does VUV Spectroscopy Work?

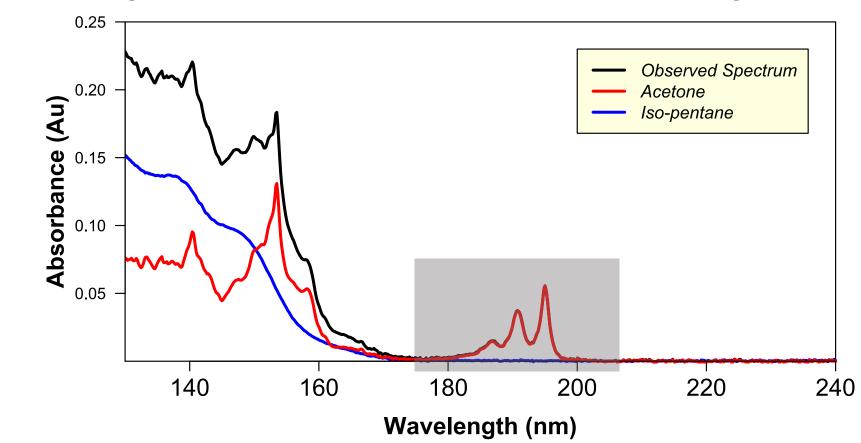

How Does VUV Spectroscopy Work?




Coelution of Iso-pentane and Acetone


Coelution of Iso-pentane and Acetone


Coelution of Iso-pentane and Acetone

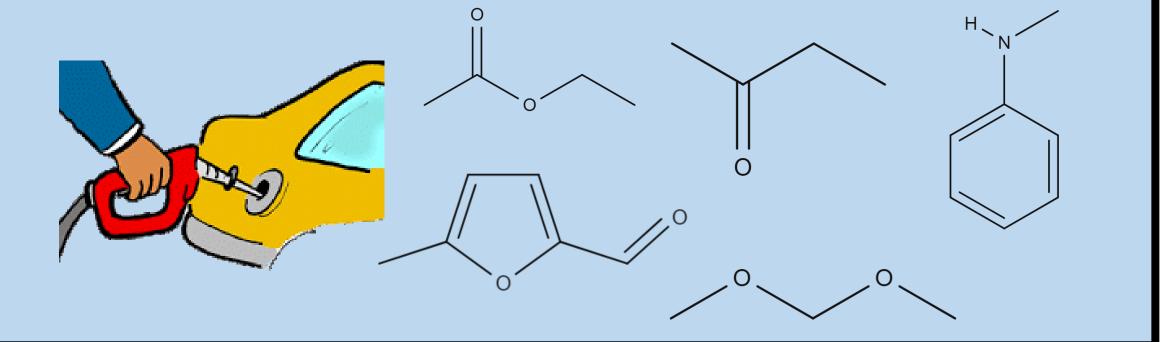

Spectral Absorbance of Acetone and Iso-pentane

Coelution of Iso-pentane and Acetone

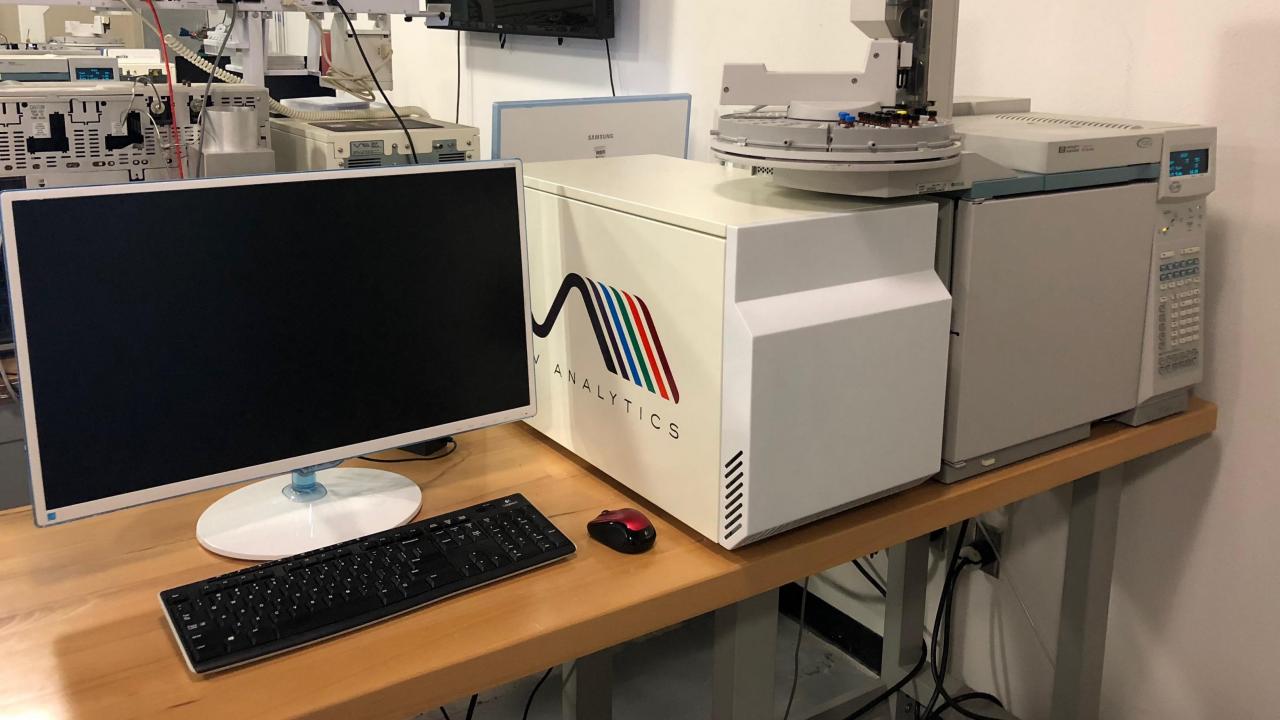
Spectral Absorbance of Acetone and Iso-pentane

Standard Test Method for Determination of Hydrocarbon Group Types and Select Hydrocarbon and Oxygenate Compounds in Automotive Spark-Ignition Engine Fuel Using Gas Chromatography with Vacuum Ultraviolet Absorption Spectroscopy Detection (GC-VUV)¹

- ✓ Under 35 minute run time
- ✓ Identification by absorption and retention time


 ✓ Spectral deconvolution

✓ Easily add compounds to library


Can we use ASTM D8071 conditions to analyze NTGAs?

retention time

2

Volumetric standards prepared in oxygenate-free gasoline 3

Volumetric standards prepared in oxygenate-free gasoline

Isobutyl acetate Acetone Dimethoxymethane 3-Hexanone Methyl acetate Diethyl carbonate 2-Butanone 2,4-Dimethyl-3-pentanone 2-Methylfuran Ethyl butanoate **Dimethyl** carbonate n-Butyl acetate Methyl pentanoate **Ethyl** acetate 2-Methyltetrahydrofuran Ethyl pentanoate 2-Pentanone Anisole Isobutyl isobutyrate 2-Pentanol 2,5-Dimethylfuran gamma-Valerolactone 4-Methyl-2-Pentanone Aniline 2-Methyl-1-butanol Methyl levulinate sec-Butyl acetate **Ethyl levulinate** Cyclopentanone **N-Methylaniline** 1% 3% 5% 10% Volume %

Volumetric standards prepared in oxygenate-free gasoline

Acetone **Dimethoxymethane** Methyl acetate 2-Butanone 2-Methylfuran **Dimethyl** carbonate **Ethyl** acetate 2-Methyltetrahydrofuran 2-Pentanone 2-Pentanol 2,5-Dimethylfuran 4-Methyl-2-Pentanone 2-Methyl-1-butanol sec-Butyl acetate Cyclopentanone

Isobutyl acetate 3-Hexanone **Diethyl carbonate** 2,4-Dimethyl-3-pentanone Ethyl butanoate n-Butyl acetate Methyl pentanoate Ethyl pentanoate Anisole Isobutyl isobutyrate gamma-Valerolactone Aniline Methyl levulinate **Ethyl levulinate N-Methylaniline**

Additional samples:

0.05% 0.1% 0.2% 0.5% 1% 2% 5% 10% 20%

2

3

30

Analyzed with ASTM D8071 using GC-VUV

ASTM D8071

Agilent 6890 GC

- Column: 30m x 0.25mm x 0.25µm Rxi-1ms
- GC Inlet: 250°C, split 300:1
- Constant Flow Mode: 1.0
 mL/min He
- Injection volume: 1 μL
- Oven: 35°C (10 min), 7°C/min to 200°C (0 min)

VUV Analytics VGA-100

- Makeup gas: 0.25 psi N₂
- Acquisition range: 125-240
 nm
- Acquisition rate: 4.5 Hz
- Detector flow cell: 275°C
- Transfer line temperature: 275°C

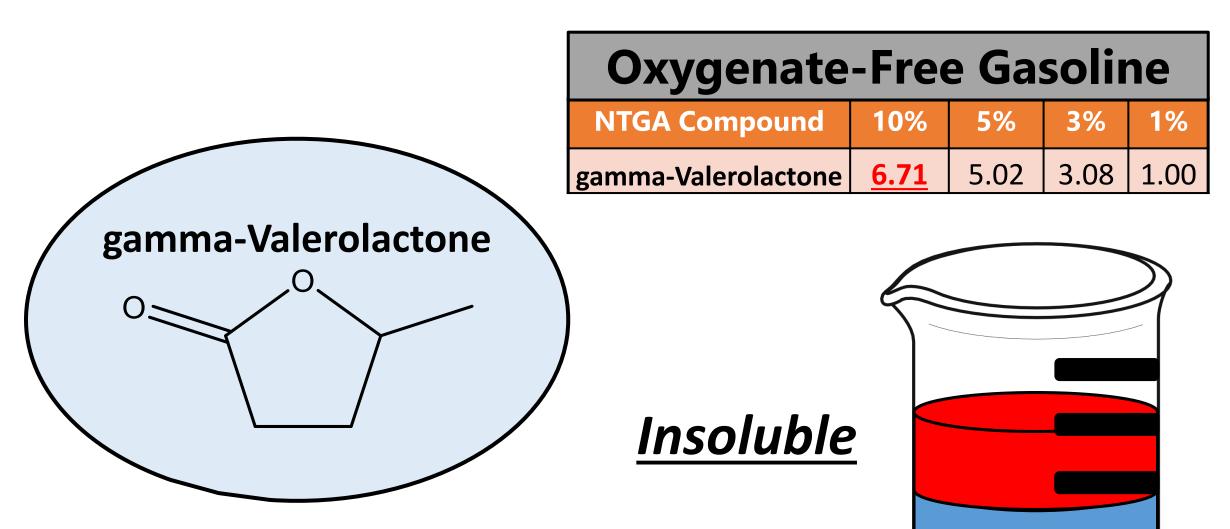
2

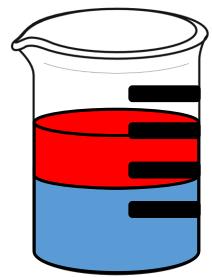
Д	=	A	bs	or	pti	on
-				•••	· · ·	••••

3

b

- = Molar Absorptivity
 - = Path Length
- c = Concentration

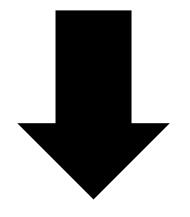

Quantified

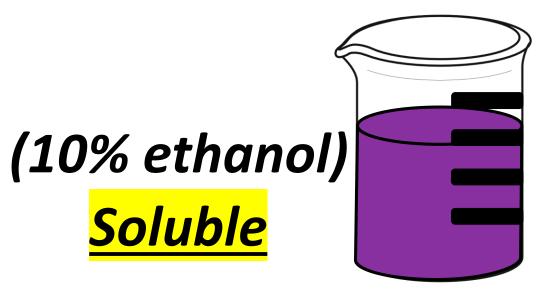

3

Beer-Lambert Law: $A = \varepsilon bc$

NTGA Compound	10%	5%	3%	1%	NTGA Compound	10%	5%	3%	1%
Acetone	10.9	4.96	3.00	0.956	Isobutyl acetate	10.5	5.40	3.20	1.04
Dimethoxymethane	10.4	5.12	3.13	1.08	3-Hexanone	10.0	5.25	3.25	1.09
Methyl acetate	10.4	5.20	3.14	1.06	Diethyl carbonate	10.5	5.36	3.18	0.954
2-Butanone	10.4	5.12	3.09	1.11	2,4-Dimethyl-3-pentanone	10.1	5.15	3.18	1.08
2-Methylfuran	10.2	5.24	3.17	1.05	Ethyl butanoate	10.0	5.22	3.19	1.06
Dimethyl carbonate	10.5	5.21	3.09	1.05	n-Butyl acetate	10.2	5.27	3.16	1.06
Ethyl acetate	10.3	5.65	3.66	1.25	Methyl pentanoate	10.1	5.17	3.13	1.03
2-Methyltetrahydrofuran	10.2	5.13	3.13	1.04	Ethyl pentanoate	10.3	5.37	3.31	1.18
2-Pentanone	10.6	5.32	3.18	1.01	Anisole	10.1	5.16	3.03	1.04
2-Pentanol	10.2	5.19	3.32	1.15	Isobutyl isobutyrate	10.0	5.12	3.13	1.04
2,5-Dimethylfuran	10.2	5.18	3.18	1.03	gamma-Valerolactone	6.71	5.02	3.08	1.00
4-Methyl-2-Pentanone	10.3	5.30	3.19	1.06	Aniline	10.3	5.23	3.19	1.07
2-Methyl-1-butanol	10.3	5.38	3.21	1.08	Methyl levulinate	10.2	5.13	3.19	1.10
sec-Butyl acetate	10.5	5.43	3.25	1.08	Ethyl levulinate	10.2	5.20	3.16	1.06
Cyclopentanone	10.1	5.18	3.14	1.00	N-Methylaniline	10.3	5.32	3.28	1.08

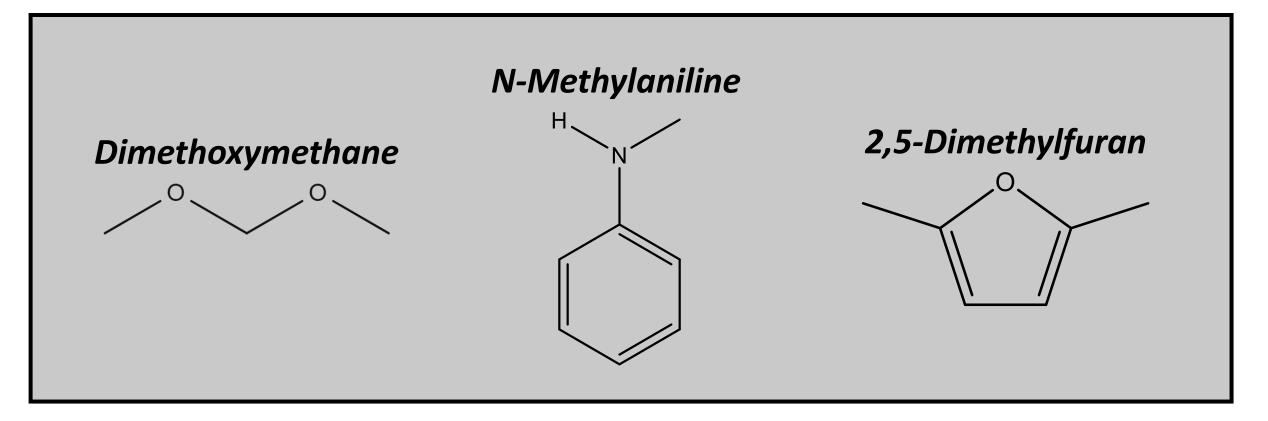
NTGA Compound	10%	5%	3%	1%	NTGA Compound	10%	5%	3%	1%
Acetone	10.9	4.96	3.00	0.956	Isobutyl acetate	10.5	5.40	3.20	1.04
Dimethoxymethane			2 13	1.08	3-Hexanone	10.0	5.25	3.25	1.09
Methyl acetate					Diethyl carbonate	10.5	5.36	3.18	0.954
2-Butan		\circ			2,4-Dimethyl-3-pentanone	10.1	5.15	3.18	1.08
<u>2-Met</u> 0	_/	~ ⁰ \		/	Ethyl butanoate	10.0	5.22	3.19	1.06
Dimethy	\prec		γ		n-Butyl acetate	10.2	5.27	3.16	1.06
Ethyl at		/			Methyl pentanoate	10.1	5.17	3.13	1.03
2-Methyltetrahyd		/			Ethyl pentanoate	10.3	5.37	3.31	1.18
2-Pentanone				.01	Anisole	10.1	5.16	3.03	1.04
2-Pentanol	10.2	5.19	3.32	15	Isobutyl isobutyrate	10.0	5.12	3.13	
2,5-Dimethylfuran	10.2	5.18	3.18	03	gamma-Valerolactone	<u>6.71</u>	5.02	3.08	1.00
4-Methyl-2-Pentanone	10.3	5.30	3.19	1.06	Apiline	10.3	5.23		1.07
2-Methyl-1-butanol	10.3	5.38	3.21	1.08	Methyl levulinate	10.2	5.13	3.19	1.10
sec-Butyl acetate	10.5	5.43	3.25	1.08	Ethyl levulinate	10.2	5.20	3.16	1.06
Cyclopentanone	10.1	5.18	3.14	1.00	N-Methylaniline	10.3	5.32	3.28	1.08

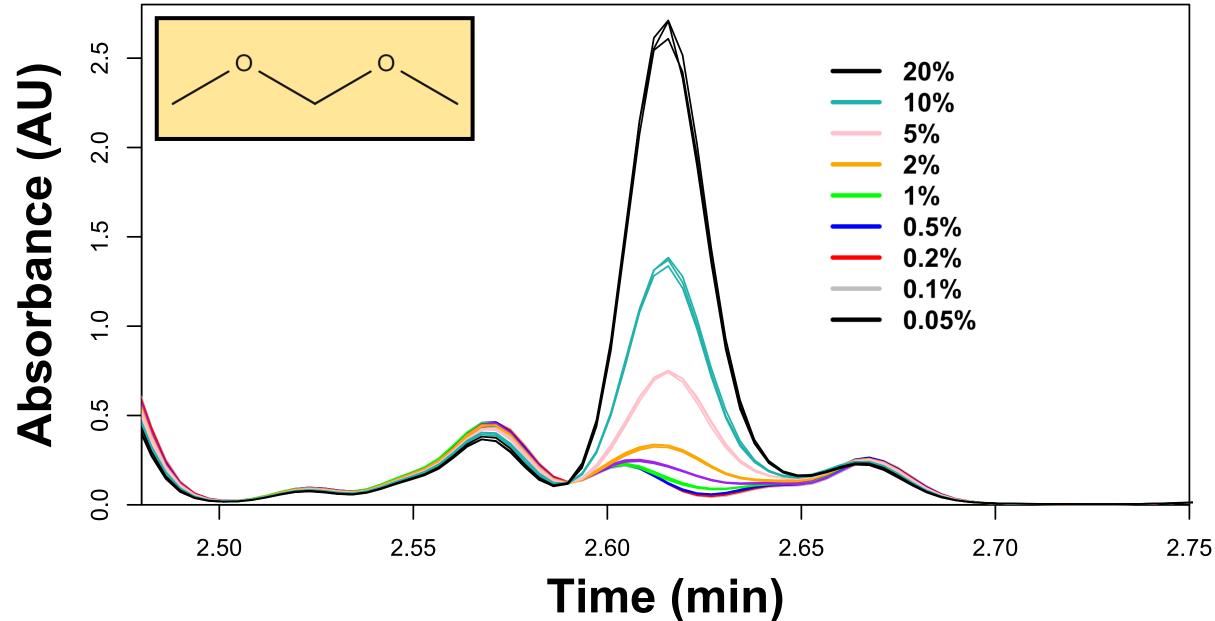




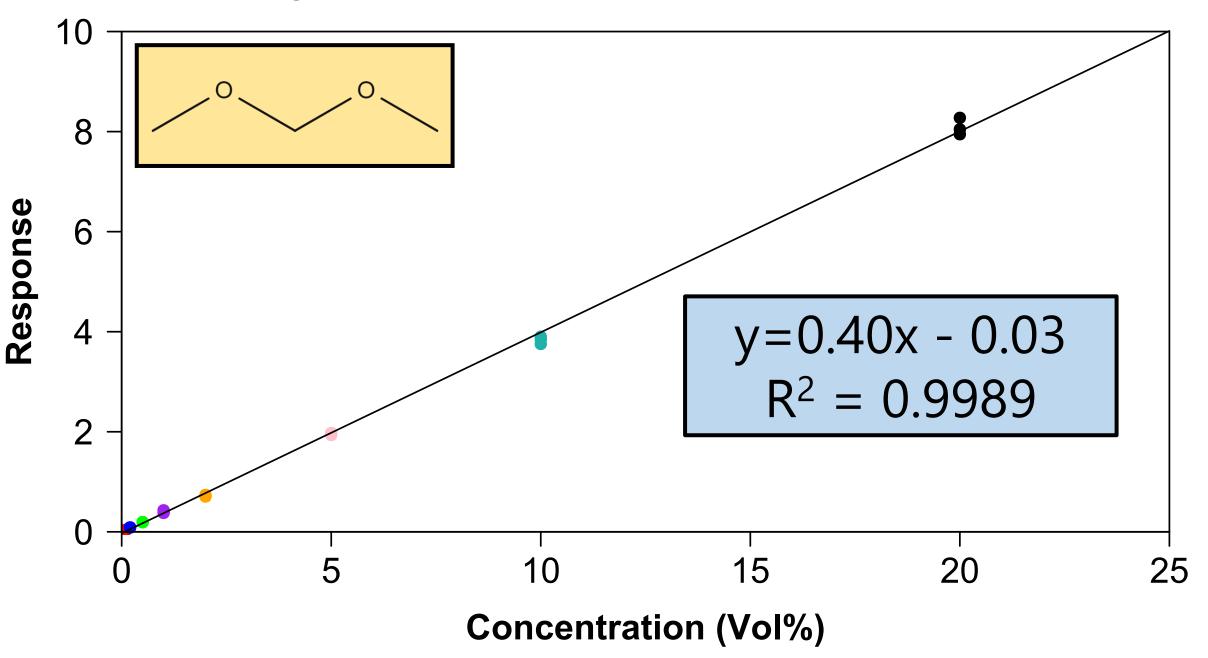
(No ethanol) <u>Insoluble</u>

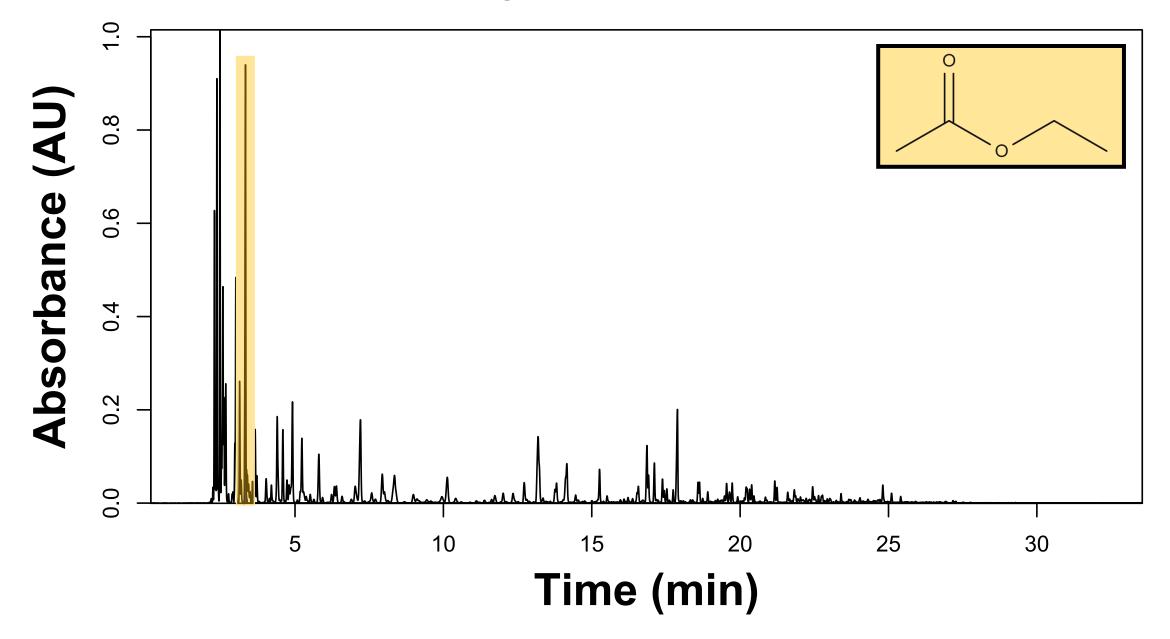
Oxygenate-Free Gasoline

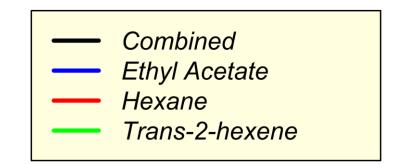

NTGA Compound	10%	5%	3%	1%	
gamma-Valerolactone	<u>6.71</u>	5.02	3.08	1.00	

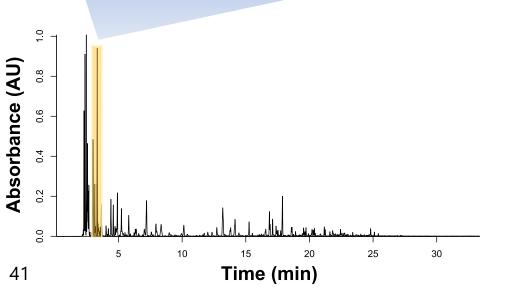


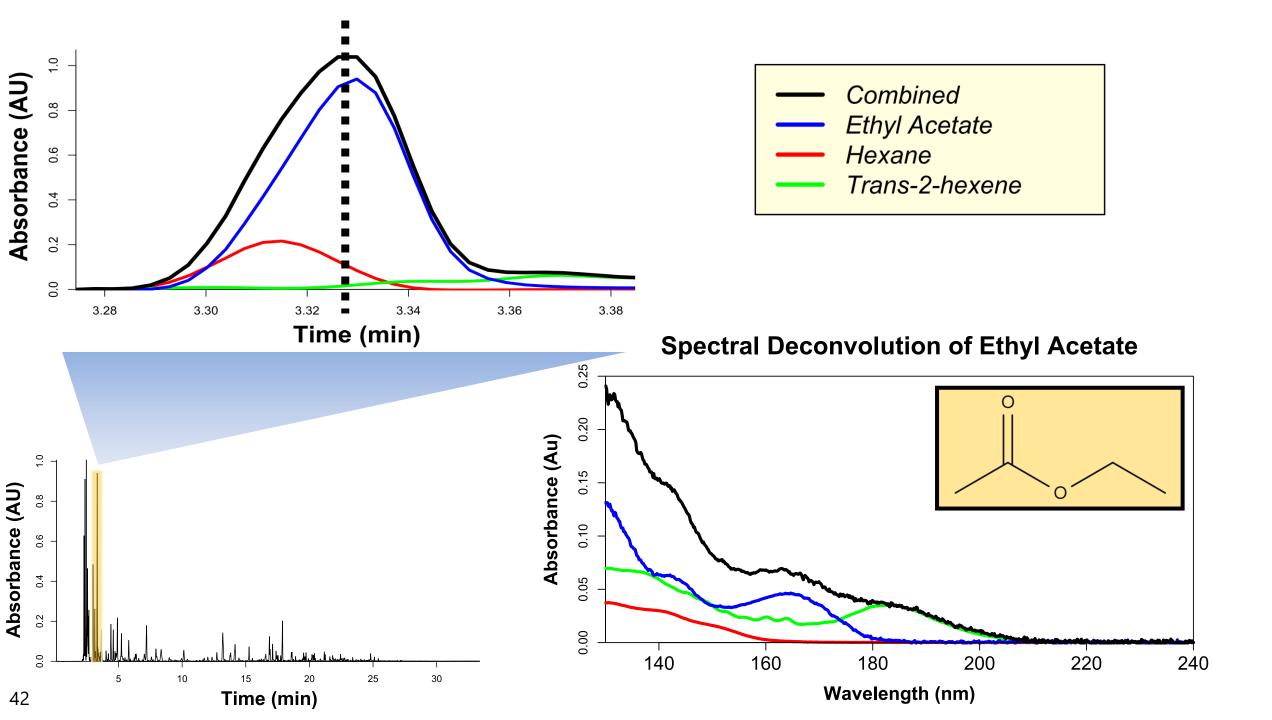
Murphy Express Gasoline										
NTGA Compound	10%	5%	3%	1%						
gamma-Valerolactone	<u>10.3</u>	5.51	3.26	1.05						


NTGA Compound	20%	10%	5%	2%	1%	0.5%	0.2%	0.1%	0.05%
Dimethoxymethane	20.9	9.85	4.90	1.83	1.00	0.49	0.22	0.09	0.06
N-Methylaniline	22.8	11.2	5.62	2.20	1.11	0.54	0.22	0.07	0.03
2,5-Dimethylfuran	20.7	9.96	4.88	1.83	1.01	0.47	0.16	0.06	0.02


Dimethoxymethane in Gasoline


Dimethoxymethane Response vs. Concentration %




10% Ethyl Acetate in Gasoline

Conclusions

- NTGAs <u>can</u> be analyzed using GC-VUV and ASTM D8071 conditions
 - Compounds easily added to library
 - Deconvolve coeluting compounds
 - Accurately quantified
- ASTM D8071 conditions are favorable over ASTM D6730
 - Shorter run time
 - Confidence in identification
 - No method changes necessary

VUV ANALYTICS

Image: https://www.videoblocks.com/video/o il-platform-at-sea-at-sunset-lkqbl2d

Questions?

Ryan.Schonert@VUVanalytics.com