Life Science

VUV spectroscopy can characterize water and solvent in API in the same run. VUV spectroscopy offers high sensitivity and unique selectivity for the detection of API contaminants such as aldehydes.

Known advantages of VUV Spectroscopy

  • The ability to analyze water and residual solvent in API in the same run
  • The capability of characterizing isomeric impurities without need for chromatographic baseline resolution
  • Instrument and software designed for scaling from R&D to production
  • Intuitive data processing workflow and software automation remove analytical complexity
  • Process operators and laboratory technicians can run and analyze samples with minimal oversight
  • Easy to understand analysis by Beer-Lambert Law (same principle used in UV-Vis spectroscopy)


Visit the Knowledge Base to download and view more about the GC-VUV solution for residual solvent analysis including articles, application note, blog, and video content.


Analysis of Residual Solvents in Pharmaceutical Excipients and Products with Static Headspace – Gas Chromatography – Vacuum Ultraviolet Absorbance Spectroscopy

Lindsey Shear-Laude describes how residual solvents determination in pharmaceutical products by GC-VUV and automated headspace sampling results in >5X shorter chromatography runtimes and allows the combination of multiple solvents (Class 1, 2, and others) into a single analysis.

View the follow-up webinar hosted by GERSTEL to get additional details about the analytical solution provided when GC-VUV is combined with the GERSTEL automated headspace Multi-Purpose Sampler (MPS).

Solving Analytical Challenges in Life Science

Key Features of VUV Spectroscopy

  • High degree of data analysis automation reduces human error
  • Intuitive spectral fingerprint compound identification and Beer’s Law quantitation eliminates guesswork
  • Software deconvolution of co-eluting analytes allows chromatography runtimes to be deliberately compressed
  • Proprietary algorithms automate compound class characterization

Spectral Identification

Shining a new light in gas chromatography and streaming gas applications. Everything absorbs strongly in the VUV spectrum. Compounds can be unambiguously identified and quantitated in a variety of applications including oil & gas, forensics, fragrances & flavors, petrochemical, environmental, and life science. VUV detectors provide unmatched selectivity of isomers and co-eluting analytes without the need for chromatographic baseline resolution.  Unlike legacy detection methods, VUV spectroscopy allows for more automated analysis with lower risk of errors, shorter chromatography run times, and higher analytical throughput.
  • “The VUV detector has proven itself with the ability to distinguish olefins and aromatics from aliphatics – that’s a killer application given the complexity and time involved using any other technique. The VUV detector’s ability to perform a more accurate and much more robust PIONA analysis is an important milestone in its ongoing success.”

    Bill Winniford, Fellow

    Bill Winniford, Fellow, The Dow Chemical Company, Houston, Texas, USA

  • “VUV spectroscopy adds a dimension that is complementary to mass spectrometry, offering selectivity that is difficult to otherwise obtain.”

    Hans-Gerd Janssen, Professor and Science Leader

    Hans-Gerd Janssen, Professor, University of Amsterdam, and Science leader, Unilever Research Vlaardingen, the Netherlands

  • “One of the main advantages of VUV detection for us appeared to be the ability to gain more specific molecular information…co-elutions that we know exist but cannot be identified with FID can be unraveled.”

    Pierre Giusti, Molecular Separation & Identification Service Manager, and Gaelle Jousset, Gas Chromatography Laboratory Manager

    Pierre Giusti, Molecular Separation & Identification Service Manager, and Gaelle Jousset, Gas Chromatography Laboratory Manager, Research & Development, TOTAL Refining & Chemicals, Normandy, France

  • “The VUV detector will be used as a universal, calibration-free tool that provides the relative quantitative values of distinct molecules in mixtures in a rapid manner.”

    Luigi Mondello, Chair of ISCC and GCxGC Conference in Riva del Garda, and Professor

    Luigi Mondello, Chair of ISCC and GCxGC Conference in Riva del Garda, and Professor, University of Messina, Italy

  • “One thing that I really like about VUV is that it can be considered a universal detector but with the advantage of being familiar to us. We all used UV spectrometers in school.”

    Nicholas Snow, Professor

    Nicholas Snow, Professor, Seton Hall University, New Jersey, USA

  • “Eliminates ionization inefficiencies that are encountered in mass spectrometry analysis."

    Mark R. Emmett, Ph.D.

    Mark R. Emmett, Ph.D. Professor, The University of Texas Medical Branch Galveston, UTMB Cancer Research Center

  • “An amazingly simple concept extended into a powerful spectral region."

    Tim Hossain, Ph.D.

    Tim Hossain, Ph.D. Chief Scientist, Cerium Laboratories

  • “The VUV detector is a powerful new tool in the GC toolbox."

    Kevin A. Schug, Ph.D.

    Kevin A. Schug, Ph.D. Professor & Shimadzu Distinguished Professor of Analytical Chemistry, The University of Texas at Arlington